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PRrROOF OF LEMMA [}

First, note that the consumer’s expected payoff of adopting the alternative in the search mode
is non-positive if the purchasing threshold T < 0. In contrast, because there is a positive probability
of reaching any belief within a given period of time, the consumer’s expected payoff of adopting
the alternative in the search mode is strictly positive if the purchasing threshold T > 0. Therefore,
the optimal = > 0.

Suppose the purchasing threshold in the no-search mode is higher than that in the search mode,
T > T. Because the belief evolves continuously, one can see that the consumer never adopts the
alternative in the no-search mode. We now show that the consumer can be strictly better off by
using a lower purchasing threshold in the no-search region. Consider 7’ := T — ¢, where € > 0.
Consider z = 7’ in the no-search mode. The consumer will adopt the alternative immediately and
obtain a payoff of 7’ if the threshold in the no-search mode is Z’.

Denote the consumer’s expected payoff in the no-search mode by W (z) and in the search mode
by V(z) if the threshold in the no-search mode is . We have W (2') = E[e "MV (3')], where N is

the time of the first arrival of a Poisson process with rate 5. We have:

W (@) =Ele ™MV (@)]
<Ele”"™MV (7)]
=Ele~"™M|7
<[P(N; <1)-1+P(Ny > 1)-e "z
=[(1—eP)-14+eP .z

=T—ePl-e"zZ

One can then see that W(Z') < ' = T — € for € small enough. Therefore, the threshold z > =

cannot be optimal.

DERIVATION OF SOLUTION TO BASE CASE WITH DISCOUNTING:

Given that lim,_, - V() = 0, as the expected payoff of the DM has to approach zero if the
expected payoff of the alternative approaches negative infinity, we have that the solution to

satisfies
V(x) = Ape™ (i)



where A; is a constant to be determined.

Similarly, applying It6’s Lemma to , we can obtain the solution to the second order differential

equation in V(z) for z € (z,7) as

V(z) = Aze™ + Aze™ ™ 4 L (ii)

where Ay and Az are constants to be determined.

Using value matching and smooth pasting of V(z) at 2 and z, V(27) = V(z7),V/(27) =
V/(zt), V(z) =7, and V/(T) = 1, and W(Z) = Z, we obtain the following system of five equations
to obtain 7, T, A1, Ag, and As.

Age™ 4 Aze™ ™ 4 . i o= (iif)
TAge™ — fAze™ ™ 4 riA =1 (iv)
Age™ 4 Aze™ T 4 . i )\EE = Ae® (v)
TA2e™ — [Aze™™ + riA = nA;e™ (vi)

TfﬂAlenf = Z (vii)

Using —, we can obtain a system of two equations to obtain z and T as

T = T
z (rgﬁ o rj:A) + % <n:fwlgﬁ o riA)
F(rt8 _ )_i(ir-i—ﬁ_ ,\)
eﬁ(i_i) _ ( B T‘-‘r:\ _ n 7: B T+ . (lX)
AL T 5N

Using § =T —  we can rewrite and , as a system of equations for § and = as

i = 5 r+rnd + AD )
T DEr(r+ B+ A) 0+ B)(r+ )] —npr
A+rD —nréD

rBD +n(r+ B)(r+ ) —mr(r+ 8+ N

F= (xi)

where D = €M = eﬁ@_f) Using and we can obtain @ in the main text, from which we
can obtain §. We can then use @ or to obtain z. Lastly, we can obtain T from § and = because

T=1I+0.

DERIVATION OF EQUATION IN THE BASE CASE: Since § — 0 as 8 — 400 and D = 1+75+0(4),

20Gince D depends on %, @) and @) can also be viewed as a system of equations for T and z.
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we have

B(D —1)* = 2(r+\)
= B8 4+ 0(8))*> = 2(r + A) + o(1)
= B20% = 2(r + \) +0(1)
= B6% = 0%+ o(1)
= /B8 = 0, as f = +o0

PROOF OF PROPOSITION [k

We provide proof for the comparative statics w.r.t. o?. The proofs for the comparative statics
w.r.t. 8, r, and A are similar.

Given 02 < o7 and the corresponding cutoff beliefs (Zs, Zs), (Ty,T¢), we want to show that

Ty > Ts and Ty > Tg.

Suppose Ty < Ts. Then Vi(T,) > Ty, because the DM keeps searching for information when the
belief is Ty and 02 = 2. Also, V4(T;) = Ty, because the DM takes the alternative when the belief
is o and 0% = 0. Therefore, Vi(z¢) > Vi(Z;).

However, one can see that the DM can achieve a payoff of at least V;(Z;) when o2

= Ut% and the
belief is Z; by using the optimal strategy when o2 = Jg (which may be sub-optimal when ¢? = o2).

Therefore, Vi(Zy) < Vy(Z¢), a contradiction. So, Ty > Ts.

Now suppose that Z; < Zs. Then Wy(Zy) > Ty, because the DM defers the choice when the
belief is Ty and 02 = 2. Also, W;(Z¢) = T, because the DM takes the alternative in the no-search

mode when the belief is Z; and 0 = . Therefore, V() = Tgﬁ Ws(zg) > TE'B Wy(zg) = Vi(zy).

However, one can see that the DM can achieve a payoff of at least V(Z,) when o2 = (7% and the

belief is 7y by using the optimal strategy when 0 = o2 (which may be sub-optimal when o2 = ¢2).
Therefore, V() < Vi(Zy), a contradiction. So, Ty > Zs.
OPTIMAL PRICING FOR BENCHMARKS:

Let Vf"b denote the firm’s value function in the No-Fatigue Benchmark. The consumer buys
when x > T, + P. Note that if zg > Z,,; + P, the consumer buys immediately, thus the firm should

charge P = xg — Typ. For x < T, + P, we have

Vit(z) = e ""EV (2 + dx) (xii)



Applying 1t6’s Lemma and solving the resulting differential equation, we get
2r
Vit (x) = nbe\/47 + Bupe Ve (xiii)

where A,; and B,,; are constants to be solved. Because V]?b(x) — 0 as * — —o0, we must have
By, = 0. The constant A, is solved by applying the boundary condition Vf"b(fnb + P) = P. This

produces

anb( ) Pe\/7($ Tnp—P) (xiv)

which is maximized at Py, = T, = \/g—:. The optimal price is P, = 4/ % for g < 2\/‘2’% and

P;b:xo—\/g—i for $022\/%i-

A similar analysis of the Model-Free-Fatigue Benchmark shows that the optimal price is P, =
/o /o /o B
2T}\+Bf0raz0<2 gmande—xo 2r>\+,8f0r$0>2 m.

SOME ANALYSIS OF OPTIMAL PRICING:
Substituting Wy(z) = %Vf(m) into , and using It6’s Lemma, we can obtain the second
order differential equation in Vy(x) for x < + P as
r+B+A o
15 @ =5V (xv)
Given that lim,, o Vy(xz) = 0, as the expected payoff of the firm has to approach zero if the

expected payoff of the alternative approaches negative infinity, we have that the solution to (xv)

satisfies
Vi(x) = A (xvi)
where A; is a constant to be determined
Similarly, applying Itd’s Lemma to , we can solve the resulting second order differential

equation in Vy(z) for x € (x + P,T + P) as

Vi(x) = Aye™ 4 Age” m-i—i)\P (xvii)

where .2{2 and 23 are constants to be determined.

*'Recall that n = /25 Tii?‘ and 7 = \/@



Conditions — can be written as:

A

P = AyelTHP) 4 fgem1@HP) 4 P (xvii)
S S S A
n@+pP) _ 7(z+P) -n@+pP) ;. _ N i
Aje Ase + Ase + " )\P (xix)
A TP = AypelTHP) _ fame1@+P), (xx)

Taking the derivative of m with respect to price and making it equal to zero, yields the
optimal price for zg € [z, x§*]. This yields an equation h(P,xo) = 0 which is represented by

A ~ _ ~ _
h(P.wo) = 2 P74 Ay(1 = P)e + Ay(1+ 7P )e 70 =0, (xxi)

where Ay and Ajs are both functions of price.

In order to obtain some more specific results we consider two particular cases.

The Case of f — 0 for xg € [z, x§*] :

When 8 — 0, we have n — 7,7 — 0, and €"*(1 — nT) + %
T > 1/n).

From — we can obtain that in the limit

= 0 (from which we recall that

Vf(.%'()) _ P |:T(77$ + 1)677(360—5—]:’) _ gen(P—xo) + /\:|

T+ A 2
aV, 71 B A\
Sign f(x) :Sign A+ (1 — nP)meﬂ(woﬂva) _ (1 + nP)ien(PfxO) .
oP 9 5
Note that in this case we have xf — 1/n. So, for xy > z{;, we can obtain that 8Vf(xo) > 0 for

OV (xo)
oP

P = 1/n. Furthermore, we can obtain that < 0 for P = xg. So, we have that for xy € [z, z{*]

we have that P* € [1/n,z¢]. If the price function is continuous at x§*, then from the definition of

T+
rn2zT.”

x4" we can also obtain for this case of 8 — 0 that xj* — = +

To check whether the price function is continuous at xj*, we can check whether for z§* obtained
by h(zf* — 7, z5*) = 0 we have that Vy(z§*, P) is concave in the price P when P = z§* — Z. This
condition yields, using , A1 < 2a% — 1 where a > 1 satisfies e%(a — 1) — 2a% + 1 = OE For
A/r > 2a* — 1 we then have then that the price function cannot be continuous at x3* and we then
have x§* obtained by z§* — 7 = Vy(af*, P*(x*)) and P*(x§*) € argmaxp Vi(xj*, P), and that the

optimal price falls at the discontinuity, limg, sz« P*(20) > 25* — 7.

22This yields a ~ 1.94 and 2a? — 1 ~ 6.51.



For the case in which the price function is continuous at zj* we can also obtain that the price

. . .. 82Vf(l‘0) .

function is not monotonic in xg for zy € [zj, z57]. Note that 5z T > 0 so that the optimal
82V (z0)

0POxg ‘10:‘28*

is continuous at z§* can be negative if nz < /1 + A/r. Using , we can then obtain that this

condition always holds when the price function is continuous. In this case of § — 0 and continuous

price is increasing in g for x close to x(. Note also that when the price function

price function, we then obtain that the optimal price is decreasing in xg for x close to x{*.

Since P* < zg — z for xy > x(;, the DM adopts the alternative at x¢ in the no-search mode.
Since P = ¢ — 7 is optimal for z¢ > z3*, the DM adopts the alternative at z( in the search mode
in that case. We can show that the firm’s value function decreases in the price P when g is high
enough. When the DM’s prior belief about the alternative is high enough, the firm can already
obtain a high payoff by inducing the DM to adopt the alternative immediately without searching.

The Case of p — oo for xg € [xf, x5*] :

When 8 — oo, we have T,x — 4/ ‘;—i Therefore, the interval [zg — T, xg — Z] disappears and the
possible optimal prices are P > xg — Z. From the previous analysis, one can see that the optimal
price is

Pt Ln, if 1/n>x0—2
xo — T, otherwise.

02V (z,P)
oP?  |z=z}* P=x}* %

is strictly negative for 8 — oo and z{* satisfying h(z§* — Z,25*) = 0. The result that the price

To get that the price function is continuous for g large, we can obtain that

function is monotonic for 3 — oo is straightforward to obtain since we have zj* — x5 — 0 for

8 — oo.

OPTIMAL PRICING IN A TWO-PERIOD MODEL:

Consider a similar setup in discrete time. There are two periods, t = 1,2. The DM can search
for information about the alternative at most twice. Given the belief at the beginning of each
period, x¢, the DM’s belief will become x; + A or x;y — A with equal probability if she is in the
search mode and decides to search. The DM can adopt the alternative without searching, after
searching once, or after searching twice. She may switch from the search to the no-search mode
with probability A at the end of the first period. The discount factor per period of both the firm
and the DM is . Let us first consider the optimal search strategy of the DM, where 1y = z; — P.

Proposition 9. Suppose 45 + (1 - )\);5? > 4f Yo > 4723722(1\;\21)\)32A the DM adopts the

231f this condition is not satisfied, the threshold of adopting the alternative without searching is different. But the
intuition of the entire analysis is the same. We omit the presentation of that case for simplicity.



2(1-\)3
7 4-25—2X05—(1—X)32
receiving a positive signal, receiving a negative signal and then a positive signal, or switching to

the no-search mode at the end of period one. If yy € [—;%g:A,A) The DM adopts the alternative

alternative without searching. If yo € [A A) the DM adopts the alternative after

after receiving a positive signal or receiving a negative signal and then a positive signal. If yo €
[—A,—%A) the DM adopts the alternative after receiving two positive signals, or receiving a
positive signal and then switching to the no-search mode. If yo € [-2A,—A] the DM adopts the

alternative after receiving two positive signals.

Xo

Figure A.1: Example of the firm’s profit II as a function of g for r = .95, A = .5, and A = 1.

From this proposition, one can see that the DM’s adoption likelihood is piecewise constant
and non-decreasing in xg. Therefore, the firm will only choose from prices such that yg = z¢ —

2(1-\)8 16 A A _ : — _

P ¢ {4_25_2>\3_(1_A)32A,A, 2—3A’ A, —2A}. Denote those price schemes by Pi(z9) = x
2(1-\)8 -5

4—23\—2()\;5\—21—)\)3\2A’P2($0) = X9 — A,Pg(:L’O = 9 + %A,Pz;(l‘o) = x9 + A,P5($0) = 19 + 2A.

Note that the price increases from Pj(x) to Ps(x¢) for a given xy. The corresponding profits are:

Hl(l’o) = X9 — 4723722(1\3_\:\2157>\)§2A,H2($0) = (g + )\76 + %8\2)(%‘0 - A),Hg(l’o) = (% + %3\2)(1‘0 +

;%A), II4(xo) = (”\75—1— %@)(xo—l—A), II5(z) = %3\2(:60—|—2A). By plotting the firm’s profits from

all the candidate price schemes in Figure we can illustrate the optimal pricing strategy. The

)l

firm’s expected payoff from charging each pricing scheme is linear in xg. A lower pricing scheme
leads to a higher adoption likelihood, and thus corresponds to a profit function with a higher slope
and lower intercept. When the prior belief zq is low, the firm charges the highest candidate price

P5(x0), which increases in xq linearly. The intuition is that the DM only cares about yo = xo — P.



. Y //

Figure A.2: Example of the optimal price P* as a function of xg for r = .95, A = .5, and A = 1.

So, the firm can charge a higher price to induce the same adoption likelihood when the prior belief
increases. As xg increases to a certain level, however, the firm switches from charging a price given
by Ps(zg) to charging a lower price given by Py(xo). Intuitively, as x¢ and the price increase, the
firm’s loss from non-adoption is larger. Therefore, the firm has a higher incentive to induce the DM
to search less and adopt more while the cost of doing so, Ps(xg) — Ps(xg), does not depend on xg.
When this incentive becomes strong enough, the optimal price has a discrete downward jump, as
illustrated in Figure Then, the optimal price remains as given by Py(z() and increases in xg
linearly until it switches from the pricing function Py(zp) to Ps(x¢) and decreases discontinuously.
The optimal price then remains given P3(zp) and increases in xg linearly until it switches from
Ps(x0) to Pi(x). For zy high enough, the optimal price is always given by Pj(xg), low enough such
that the DM adopts the alternative without searching. In sum, each time the firm switches from
one pricing scheme to another with a higher slope, the optimal price decreases discontinuously. In

all other places, the optimal price increases in xq linearly.

The optimal price as a function of xg is smoother in continuous time. But non-monotonicity

and discontinuity may still arise due to the effects we identify in discrete time.

PROOF OF PROPOSITION [Bl

When the initial belief is high, x¢o > x§*, Proposition {4f shows that the optimal price is zg — 7,

and the DM adopts the alternative without searching. In this case, the firm’s profit is xg — T.



Proposition [I] shows that T increases in 8. So, the firm’s profit decreases in 8. The firm does not

retarget given any retargeting cost k, > 0.

When the initial belief is low, z¢ < 0, Proposition {4f shows that the optimal price is 1/n and
the DM does not adopt the alternative at xy in either the search mode or the no-search mode. The

firm’s profit is its value function evaluated at xg. According to (|17]),

no —no ~
Vi(zg) = — %r+/\~(e’7 —i;e ) _ _ npP no.
(77 + 77)@77(30+P)+775 + (,,7 _ n)en(erP)fné r+ A
One can see that n = %ﬁfg)‘ decreases in 3. Because zg < 0, the last term of the value function

e'™0 increases in (.

2r - \(e® e~ 19) nP
N0 — P
Now look at the terms before e"*°, T := G T+ PYHIs (7)o M T PI=8 4 A

limy—s 400 7/7 = /7/(r + B). One can also derive from (&) that limy_ e ZVA = Bo/[V2(r +
r(r + 8))]. Therefore,

One can see that

. . 2r+e™  \/(r+8)/r
1 AN =1 A —
Nl VAT el \F(ﬁ T et A

TR
(2 + [t
o JiTB
\/561+\/E’

which increases in . Therefore, Vy(xg) = T - increases in 3 when A is sufficiently large. Denote

k= Vi (z0l|Br)=Vy (20| Bo)
- ﬁr*/BO

. One can see that k£ > 0 and the firm retargets if and only if &k, < k.

PROOF OF PROPOSITION [Gk

When the initial belief is high, ¢ > x§*, Proposition |§| shows that the optimal price is ¢y — T,
and the DM adopts the alternative without searching. In this case, the firm’s profit is xg — T.

Proposition [I| shows that T decreases in A. So, the firm’s profit increases in A. The firm chooses

A=A

When the initial belief is low, xg < 0, Proposition [4| shows that the optimal price is 1/n and
the DM does not adopt the alternative at xy in either the search mode or the no-search mode. The

firm’s profit is its value function evaluated at xg. According to ,

2r + A(e™ 4 e7M) nP
(17+ n)en(5+P)+ﬁ5 + (7’7 _ 77)67](5+P)—ﬁ5 r4+ A

710

Vi(wo) =

One can see that n = / % TJ;EE)‘ increases in A. Because xg < 0, the last term of the value function



e"*0 decreases in \.

2r4\(el1% e~ 79) nP
nTo
Now look at the terms before 0, T = G e PI R (=) en e PI=78 r+/\ We have shown in

the main model that as 8 — 0,7 — 0,7 — 7 and €™ (1 — nz) + A\/r = 0. Therefore,

0T —iF
lim Ty = lim 2+ A(e™ + e ™)
B—0 B—0 27761'”75'3 (T‘ + )\)
iz—1
24 e + ’“Wg )
F=0 20(r+ N

r(nx 1)
_K()\—r)a + 2127
B AWA+Tr ’

. A—r)o?+2r2k?
for some K > 0. Denote the last expression by B()\), and denote Ao 12Tk ?%r by B(\), where

k > 0 is an arbitrary fixed constant.

—A2 4+ 30 + 2r2) 0% — 2r2(3\ + 2r)k?
2A2(\ +7)2

One can see that —A2+3Ar+2r2 < 0, and thus B'(\) < 0, when r < (v/17—3)A/4. Therefore, B())
decreases in A if r < (v/17—3)A/4. Because T decreases in A, when we replace the constant k in B(\)
by T in B(\), we also have B()\) decreases in \ if 7 < (v/17 — 3)A/4. Therefore, Vi(zq) = T - €%

decreases in X\ when f is sufficiently small and r is small. The firm chooses A* = \.

DERIVATION OF THE OPTIMAL DECISION-MAKING IN THE TwO SEARCH MODES CASE:

Applying It6’s Lemma to and solve the differential equation, we can obtain

Vi(z) = B3e™ 4 Bye ™ + P (xxii)
where B3 and B, are constants to be determined.
Applying It6’s Lemma to and solve the differential equation, we can obtain
VQ(JE) = Bleﬁx + 326_550 + (XXiii)

r+A%

where By and By are constants to be determined. We can then use in to obtain that
for x € (z,z), solving the corresponding differential equation,
A2 Ay

Vi(z) = Bse™ + Bge” 1" + o )\)2x + 50+ )\):L'[Bge_m — Bye], (xxiv)

where Bs and Bg are constant to be determined.

10



Putting together and for z < Z, we obtain a system of differential equations

AR = SV A (v
(r+MVi(z) = 022 U (x) + A\Va(z) (xxvi)
which has the solution
Va(x) = Bie™" + Bye™” (xxvii)
Vi(z) = ! _; b [Egez” - Elezlx} (xxviii)
where 21 = /72 + 3—2‘ %, and z9 = \/?)2 — i—é‘\/%, and El and Eg are constants to be deter-

mined, where we use that lim,_,  Vi(z) = lim,_, o Va(z) = 0.

Value matching and smooth pasting at the different thresholds, V4 (z) =z, V{(z) = 1, Vi(z) =
Vi@ ) V@t = V@) iE) = WE)VEY) = ViE)WE) = BE ), WEY =
Vy(z7), Va(z) = z,V4(z) = ,%Vl@’) = 7, lead to the following system of 11 equations to
obtain the 11 unknowns, Z1, To, I, By, Be, B3, Ba, Bs, Bg, B1, and Bs.

BsX + By/X + L T BsX + Bg/X + & iZ)\)TT - 2(7“)\477 /\)B1ﬂ
+2(:\f)\)ng/X (xxix)
TBsX ~TBX + = BX - By/X + - fw - (ﬁ e %Blafzx
b Baf X~ 52T B /X (s01)
BsX + Bs/ X + " - M p X4 A777325/5(’ =
(r+ )2 2(r + A) 2(r+ )
! _; b [Egezﬂ - Elezlﬂ (xxxi)
BsX — 1Bg) X + @11)2 - Q(ﬁA)BlX - %B@X + Q(ﬁA)Bz/fc
—2(:?12)\)325/)? ==L —g B [22’326@5 — zlélezlf] (xxxii)

11



- - A -
B X + BQ/X + n )\{L‘ = DB1e”" + Bye®* (XXXiii)
r

e S o~ A ~ - -
nB1 X —nBy/X + Y = 21B1€*" + 29 Boe™?* (xxxiv)
B3X + By/X + T =7 (xxxv)
r
= ~p A
NBsX —nB4/X + i 1 (xxxvi)
B1X + By /X + T (xxxvii)
r
_ _ A
nB1X —nBy/X + Y =1 (xxxviii)
5 D _z1T 29X o~ .
Do (B B = 2 (iocxix)
r

where X = e X = €™, and X = '™,

Putting together (xxxv)) and (xxxvi|) one obtains

9B X = Tik(x+%> (x1)
25X = —~ (;p - %) . (xli)
Putting together and one obtains
2BX = — <x 4 E) (i)
r+ A n
9B2/X = rik(x_%>' (xliif)

Putting together (xxix|) and (xxx|) one obtains

A 1 A2 1 A
2B3X + 7“7 (x‘f‘ 77) =2BsX + <.%' + N) - 2(7B1X(1 + 2ﬁ§)

+ A (r+X2\" 7 r+ M)
A .
T n (iv)
A 1 A2 1 A _
2B4/X + Y <$— 77> =2Bs/X + m <$— ﬁ) - mBﬁX(l — 2nz)
+2(rj— P (xkv)

12



Putting together (xxxi) and (xxxii)) one obtains

2

285X+ A (741) - g BRO ) ¢ Bl -
() 7)) e

280/ X + 2o (- 2) = g B/ -2 4 g A B
(2R3 o

where El = Elezl5 and Eg = Egezﬂ. Putting together

(7+
Ui

S AL
2By /X + —— —
2/ +r—|—)\<m

~ A
2B1 X + ——
! +r—|—>\

Elo

we obtain By = By +,/ 2

Xxxiil

and

XXX1V]

one obtains

<1

= z =
B4 <1—|—~1>—|—Bz <1+
n
)o5(-3)
n n

2

P)

(xlviii)

(xlix)

Using (xxxix] 3 Z, which we can then substitute in (xlvi))-(xlix]). Using
the resulting equations (xlviii) and (xlix|) we can obtain
2N — z1 — = A 1
R S B YYD B LCr) G A |
2n+ 21 + 22 r+ A n I3 n
= A - 1 r+ 5 29
2B/ X + —— |z —= | — z|l1—=]. 1
2/ T+A< n) p ( n) 0
Using (xlii) and in (l) one can then obtain
20 — 21 — 29 X r < 1> A <~ 1) r—l—ﬂN( 22>
< = Ttz )+ Ft+=) -y —F(1+=2 )| =
M+z14+2 | Xr+A T 7 4+ A n B n
X 1 A -~ 1 ~
= 7 (m~>+ <£C~) 7"—1—533(123)7 (1i)
Xr+A n 4+ A n B n

which is an equation on only z and Z. Note that when 8 — oo we have z,7 — \/‘;—i and is

satisfied.

Let 6y =2 — 2,00 =T — 2,D; = €, and Dy = €72, Using (xliv) and (xlvi) to take out Bs,

and using B from , By from , Bj from , and C; from , we can obtain

1

Dy

<$+£> _ At
n r

13
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where
I A2 ~ 1 r+ 0. 29 r+8 22—z 1 r 1
Gl(@ﬂﬂ) = D1|:7(T+)\)2($+%)+ B :C<1+% -+ 6 277—1—2’14—22 ET—}—A 24’77 +

A ~ 1 - [r+p 22 Ar - 2
(e 5) =35 (0 3)]] - e (s om0 0+

%(5 + 275, — Df)> . (1)

Similarly, using (xlv)) and (xlvii)) to take out Bg, and using B; from (xliil), By from (xliii)), B4

from lb and C; from 1} we can obtain

Dy <x - %) A 3, (liv)

r

where
~ 1 A2 - 1 r+ 6. 22 r+06  z1— 2z 1 r
Cale2) = E{_(r+k)2(x_%)+ B I(l_’ﬁ>+\/ E 2n+z1+22{D1r+A(“
1 A ~ 1 - 1 1
i) -2 )] - oo

245, — D%)). (Iv)

Note then that , , and (liv)) is a system of equations for 7, z, and z. Note also that putting
and (liv) together one obtains

72 At 7’) BT GGy + 7]1 (Ivi)

which determines T as a function of z and z. Plugging it in , we can then use and to

solve for z and 7.

DERIVATION OF OPTIMAL DECISION-MAKING FOR = 0 IN THE TwWO SEARCH MODES CASE:

In the case of 8 — 0 and T — 0, we obtain 21, 29 — 7], and for < = 0 we obtain

VQ(QS‘) = Eleﬁx (lvii)
- B -
Vi(z) = Bgem’—Tiem, (lviii)
o n

where El and EQ are constants to be determined.

We then have that the condition %Vl(i) =17, , is no longer required, and that condi-
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tions —, are replaced by the conditions

Bs+Bs = By (lix)
) _ _
1Bs5 — 1B + (7‘—1):)\)2 B 2(7‘/\—17z A) B+ Z(T)\Z A) B
~ i - 5t (1)
Bi+By, = B (Ixi)
nBy — o Wi 7B, (Ixii)

respectively.

Using 1) and l’ we can obtain By = m Using this in 1} we can obtain the

condition for the optimal z as
A
e®(1—n)+—-=0, (Lxiii)
r

as n = n for 8 = 0, which is intuitively the same condition as . Using (xliil) and we can

then also obtain By = (H)\) <x + ) + 277(?‘“\)

Note also that in this case (xlvii)) is replaced by

A2 A A AB;
2Bg — — B B, = . Ixi
ST 2N 2 e T N (Ixiv)

Using (Ixiv)) and (xlv)) to substitute away Bg, we can then use Bi, By, and B4 obtained above

to yield
AN 1 r+)\ 1 AL =XN)(r+A) A
—+=+-X = - = - = 1
Grsrik(erg) = () >t (1)
which determines T as a function of z.
PROOF OF PROPOSITION [Z}:
We can obtain the condition for the optimal z as
X )\ :
e™(1—nz)+—-=0, (Ixvi)
T

as n = 7 for § = 0, which is intuitively the same condition as . Furthermore, we can obtain

/\~+)‘+ X( ,1\,>:T_;)\X<LL’—,]:,>+>\(1_)\Z,(T+)\)—)\x, (Ixvii)

4n 4 n n n 2

where X = ¢ and X = €2, which determines T as a function of z. For A\ — 0, we can then obtain
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o2

br) and

Lf—>

- 1
e=tm 1 (Ixviii)

A rne
T—1/n 1 .
—_— — 1

3 — o (Ixix)

For 8 = 0 and A sufficiently small, the extent of choice closure in search mode 1 is approximated

by
_ A1 1 [ A o021 (1 1 (Ixx)
—zr—|(z—=)=y———2z—- XX
e m\2 e rTHA2r/r\2 e

The extent of choice closure in search mode 2 is approximated by

_ 1 >\+1 o? A1 1+ [r 4+ X (ex)
—Iz~ - = — S XX
L n\re 2r r+Are r

The comparative statics follow immediately.

DERIVATION OF SOLUTION FOR START-UP SEARCH CoOSTS CASE:

Using It6’s Lemma on equation and solving the corresponding differential equation, we can

obtain
~ AN
Vi(z) = ;_ ‘e +arz + ao, (Ixxii)
o

where a1 and ag are constants to be determined.

Using It6’s Lemma on equation and solving the corresponding differential equation, one
obtains
V() = C1e™ 4 Coe ™ 4 2 — ¢/ A, (1xxiii)

Using It6’s Lemma on equation and solving the corresponding differential equation, one
obtains
V(z) = C5e™ 4+ Cye ™ — ¢/ (Ixxiv)

If Z > 0, then value matching and smooth pasting at T, 7, 7, and Z leads to V(z) =7, V'(Z) =
LV@E) =V@),V' @) =V'@),VE)-F=%V(@)-F=0,V(@) = V@), V'@ =V),V(@ =0,
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and V'(Z) = 0, which are the conditions

Cle% + 0267%

Cle% - 026_%

C1e™ 4 Coe™ ™
AC1e™ — Coe ™) 4+ 1
Cge% + C’4e_?ﬁ
7[C3e™ — Cye™ ™

C3e™ 4 Cye™ ™

Cae™ — Cue™™ =
. AF+c
ap + a1z + ;— C:U2 =
o

AF + ¢

~ ~2
ag +a1x + 5L
o

From 1} and 1D we can obtain C

obtain
L) 4 C i)
ﬁ[;)\eﬁ(i—x) _ ;\e—ﬁ(i—x)} +1
L D) o oD
ﬁ[;)\eﬁ(f—f) _ 23@—77@—@]
%@2 — )t a(F-3)

€ ,—NT
95 € and Cy

1) we can obtain C5 = ﬁe‘ﬁi and Cy = ﬁe@. Using this in the other

e/ (Ixxv)
0 (Ixxvi)
F+c¢/) (Ixxvii)
AF +c
5 T
a + o (Ixxviii)
F+c¢/X (Ixxix)
AN+ c
2 1
al + = T (Ixxx)
c/A (Ixxxi)
0 (Ixxxii)
T+ F (Ixxxiii)
F. (Ixxxiv)

Similarly, 1| and

equations we can then

€ T
ax e’

= F+ 3 (Ixxxv)
AF +c.

= a1 +2 ;_ % (Ixxxvi)
o

c .

= F+ X (Ixxxvii)

AF +c_.

= a;+2 ;— % (Ixxxviii)
o

= Z. (Ixxxix)

From (lxxxv|) and (lxxxvii) we can obtain Z — = Z — Z. Using (lxxxv|) we can also obtain e7®~%) =

1/H, where
AF AE
H:1++\/(+1> —1. (xc)
c c
Using T — 7 =7 — Z in (lxxxvi|) and (lxxxviii) we can obtain
1 A\F SO .
a =5 - a;_ C(a: + ). (xci)

17



Substituting in (Ixxxix|) one obtains = = —7 and a; = 1/2. Using this in (Ixxxvi) one obtains

_ o? c 1— H? o2 B
T=1/— + . (xcii)

2X2(A\F +¢) H 4(\F +¢)

If z = 0, the DM may strictly prefer stopping search without adopting the alternative to
deferring choice. So, the value matching condition V() — F' = Z needs to be replaced by V(z)—F >

7. In that case, T will be 0 rather than 4/ 35 2()\}?+C) ! ;2 + 4()\%“) Therefore, in general,

2 1— H? 2
T = max { 7 ¢ + ? 0} (xciii)

2A200F +¢) H  4\F+c)

PROOF OF PROPOSITION [8k

The derivations for the comparative statics with regard to £’ and the comparative statics of the

extent of choice closure with regard to ¢ are straightforward.

According to and T = —Z, if 7 > 0, then

. [0z -7) , 8Fc? 9 (xciv)
signg ———= t=sign¢ ———— — 0o xciv
& oc & 2c+ \F
First consider QBIJ;KF 02 < 0. Since T > 0 is equivalent to 4/ gi 2()\1‘;+C) L }?2 + 4(>\F+C) >0&
2
8F(2c+ AF)—0* <04 c< &5 — ’\f,wehavea(x x)<01fc<16F ’\2F dziiiF 0?2 <0,
according to (xcivl). Z =0 and thus (gcx) =0ifc> 16—F —2F and 2?:5;1? o? <0.

fif\ 7+ — 02 > 0. We have shown in the previous case that = = 0 is equivalent to

8F (2c+AF)—0? > 0. Since 8F (2c+AF)—0? > QEéif\F —0? >0, 7 is always 0 when 2?5‘;\2}, —0?>0.

Now consider

In sum, the extent of choice closure always (weakly) decreases in c.

Now let’s look at the comparative statics with regard to A. One can see that H is increasing in

_ 2 . . . ~ o~ ~ 2 2 2 .
\. Therefore, 1 If = % — H is decreasing in A and 7 — T = 27 = \/g—)\()\Fic) 1 If + 2()\‘;“) is

decreasing in A. So, the extent of choice deferral decreases in A.

1 2 AF AF 2
(28) =z — 2 ==InH = 7 n 1++\/(+1) -1
n

2\ c c
:Sign{a(%;:v)}: sign{— In H + 2AF - }: sign[G(MN)], (xcv)
(A +1) -1
where G(\) := —InH + —2E___ One can see that G(0) = 0 and G’()\) is proportional to
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—(/\TF)2 < 0. Therefore, G(\) < 0,¥A > 0. We then have that implies that a(ggg) < 0. So,

the extent of choice closure decreases in \.

NON-RANDOM SWITCHING BETWEEN SEARCH AND NO-SEARCH MODES:

In this section we study the DM’s optimal search strategy under non-random switching between
search states numerically. The length of time that the DM spends in each mode is deterministic.
Specifically, the DM moves from the search mode to the no-search mode after 1/\ units of time

and moves back from the no-search mode to the search mode after 1/3 units of time.

We approximate continuous time using a discrete-time grid with increments of dt = 0.001. We
simulate the stochastic movement of z using a discrete-time approximation to Brownian motion
(Dixit 1993).

Because the DM knows whether she is able to search or not in the next “period”, there is only
one relevant adoption threshold at each t. Figure illustrates the decision thresholds under
non-random switching. The DM’s optimal search strategy is no longer stationary. The adoption
threshold in the search mode, T, decreases in time during a search period, so the DM is more likely
to adopt the alternative the longer she searches within a session. The extent of choice deferral, z,
increases in time during the no-search period. When the DM recovers from the no-search mode to
the search model, the decision threshold resets. One can interpret the difference between T at the
beginning of the search mode and the T at the beginning of the no-search mode as the extent of

choice closure.

X
30

X(t)

25

()

20

05

05 10 15 20'™

| Y
Search Mode No-Search Mode

—o
L

Figure A.3: Example of the adoption threshold as a function of time for r = .05, A=1, =1, and
o=1.

For a fixed t, we also observe that Z and z move in the same directions as they do under the

base model when 3, A, r, and 02 change.
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SEARCH STRATEGY UNDER DEADLINE:

In this section we study the case with a decision deadline numerically. If the DM has not
adopted the alternative after time 7', then the decision becomes obsolete, and the DM receives a

utility of 0.
We approximate continuous time using a discrete-time grid with increments of dt = 0.001. We

simulate the stochastic movement of x using a discrete-time approximation to Brownian motion.

Figure [A4] illustrates the decision thresholds. The DM’s optimal search strategy is no longer
stationary. Both the extent of deferral, Z, and the extent of closure, T — Z, decrease in time and

approach 0 as ¢t — T'. The DM is more likely to adopt the alternative over time.

For a fixed t, we observe that Z, Z, and T — £ move in the same directions as they do under the

base model when 3, A, 7, and o change.

Figure A.4: Example of the adoption thresholds as a function of time for » = .05, A =1, 8 =1,
oc=1,and T = 10.
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